Code No.	_ Sy	vmbol Number:	Invigilator's S	ign: Superint	endent's Sign:	
	Sy	mbol No. in Words:	_		-	
Faculty: Eng	ineer	ring Level: Bachelor	Exam Year:		Year/Part :II/I	
Program: Fl	octrid	cal and Floctronics	2080,Mangsii	Subject: FI FCTRIC CI	RCHIT THEORY (EC503FF)	
CROUP A	(Mul	tinle Choice Questions)		Subject. ELECTATE CI	[10v1=10]	
i.	An	swers should be given by filling	ng the Objective Answ	er Sheet.		
ii.	Ro	ugh can be done in the main (answer sheet			
<u>iii.</u>	Мс	aximum time of 20 minutes w	ithin the total time is	given for this group.		
	1 . /	An inductor, when energized	at t<0, will act as a	at t=0+.		
	ć	a) Voltage Source		b) Short Circuit		
	(c) Open circuit		a) current source		
	2.	The time constant of a RL series circuit is expressed as:				
	ä	a) R/L		b) L/R		
	(c) RL		d) 1/RL		
	2 '	The reconant angular freque	ncy for a parallol PI (circuit is expressed as:		
	3.	$\frac{1}{10} = \frac{1}{10}$		b) $(x) = \frac{1}{x}$		
		$2\pi fC$		$D \int \omega_{\Gamma} - \frac{1}{2\pi LC}$		
	1	b) $\omega_r = \frac{1}{\sqrt{LC}}$		d) $\omega_r = \frac{1}{2\pi\sqrt{LC}}$	· ·	
	۸ ⁻	The ownersies in the l	a ha na suritta			
	4.	I ne expression sin ωt can als	so be re-written as:	$\rho jwt_{-\rho} - jwt$		
	ä	a) $\frac{2}{1}$		b) $\frac{1}{2}$		
	(c) $\frac{e^{jwt} + e^{-jwt}}{2i}$		d) $\frac{e^{jwt}-e^{-jwt}}{2i}$		
		2)		Lj		
5. In frequency domain, $I(s) = \frac{s}{s^2 + s}$. Then in time domain,						
	ć	a) i(t) = cos 2t	74	b) $i(t) = e^{-2t} \cos 2t$		
	1	b) $i(t) = \sin 2t$		d) $i(t) = e^{-2t} \sin 2t$		
			S(S-2)			
6. The poles of the transfer function $G(s) = \frac{S(s-2)}{(s^2+5s+6)}$ are:			are:			
	ä	a) at 0 and 2		b) at 2 and 3		
	1	b) at 0 and -2		d) at -2 and -3		
	7. '	The starting point of Bode M	agnitude Plot at ω = ´	I rad/s is taken as		
	ä	a) $10 \log_e k$		b) 20 log _e k		
	1	b) c) 10 log ₁₀ k	/	d) 20 log ₁₀ k		
	8. 7	The periodicity of a function $\pi/2$	cos t is:	b) π		
	i i	c) 2π		d) not a periodic function		
				,		
	9. 1	Inverse Transfer Admittance	of any electrical two	-port network can be calculat	ted as:	
	ä	a) V_1 / V_2		b) I_2 / V_1		
	ł	I_1/V_2		d) V_1 / I_2		
	10. 7	The overall transmission par	ameters of a cascade	d two-port network is:		
		$[A_1 + A_2 \dots B_1 + B_2]$		$\begin{bmatrix} A_1 A_2 \dots B_1 B_2 \end{bmatrix}$		
	Ċ	$\begin{bmatrix} C_1 + C_2 & D_1 + D_2 \end{bmatrix}$		$\begin{bmatrix} C_1 C_2 & D_1 D_2 \end{bmatrix}$		
	1	b) $\begin{vmatrix} A_1 & B_1 \\ C_1 & D_1 \end{vmatrix} \begin{vmatrix} A_2 & B_2 \\ C_2 & D_2 \end{vmatrix}$		d) $\begin{bmatrix} A_1/A_2 & D_1/D_2 \\ C_1/C_2 & D_1/D_2 \end{bmatrix}$		
		r-1 -11ro7 -21		L-1/-2 ~1/~2J		
			-	Multiple Choice Qu	estions' Answer Sheet	
Lode No.		Marks Secured:		1. A B C D	6. A B C D	
Corrected Fil		In Words:	Data:	2. A B C D	7. A B C D	
	D	Examiner's Sign:	Date:	3. A B C D	8. A B C D	
Incorrected Fi	II			4. (A) (B) (C) (D)	9. A B C D	
	Ø	Scrutinizer's Sign	Date:	5. (A) (B) (C) (D)	10. (A) (B) (C) (D)	
- V	7					

MANMOHAN TECHNICAL UNIVERSITY

Office of the Controller of Examinations Budhiganga-4, Morang, Province 1, Nepal

Faculty: Engineering	Exam Year:2080 Mangsir	Year/Part: II/I
Program: Electrical and Electronics	Level: Bachelor	F.M.: 50
Subject: ELECTRIC CIRCUIT THEORY (EG503EE)	Time: 3 Hours	P.M.: 20

- ✓ Group A contains Multiple Choice Questions of 10 marks.
- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

Group 'B'

Short Answer Questions (Attempt any EIGHT questions only.) (8×2=16)

- **1.** What are the initial conditions for Inductor and Capacitors under energized and de-energized conditions?
- 2. Find the time constant for a series RL circuit under step response.
- **3.** Find the partial fraction expression for: $G(s) = \frac{2s}{s^2+3s+2}$
- 4. Convert the following expression in exponential form: $\cos \beta t j \sin \beta t$
- 5. Find the poles and zeros of the transfer function: $I(s) = \frac{(s^2 3s + 2)}{(s^3 5s^2)(s^2 + 7s + 6)}$
- **6.** How does a high pass filter circuit work?
- 7. Describe hybrid parameters for a two-port electrical network.
- 8. Write the expression for the Fourier series and its coefficients for a periodic signal.
- 9. Find the Driving point Impedance Z(s) for the following circuit:

Group 'C'

Long Answer Questions (Attempt any SIX questions only.)

(6×4=24)

1. Find the currents I_1 , I_2 and I_3 using Matrix method.

2. The switch K is initially open for a long time and it is closed at t=0. Find i₁, i₂, $\frac{di_1}{dt}$, $\frac{di_2}{dt}$ at t = 0⁺.

MANMOHAN TECHNICAL UNIVERSITY Office of the Controller of Examinations

Budhiganga-4, Morang, Province 1, Nepal

3. Solve for i(t) at t>0 using Classical Method.

4. Solve for v(t) at t>0 using Laplace Transform Method.

5. Draw the Bode Magnitude Plot Diagram for the following network function:

$$H(s) = \frac{20 (s+1)}{s(s+5)(s+15)}$$

6. Find the Trigonometric form of Fourier series for the following periodic waveform:

7. Find the T – parameters for the two-port network shown below.

ALL THE BEST