\qquad Invigilator's Sign: \qquad
\qquad
\square Symbol No. in Words:

Exam Year:
Year/Part :II/I 2080,Mangsir

Program: Electrical and Electronics

 GROUP A (Multiple Choice Questions)i. Answers should be given by filling the Objective Answer Sheet.
ii. \quad Rough can be done in the main answer sheet
iii. Maximum time of 20 minutes within the total time is given for this group.

1. An inductor, when energized at $\mathrm{t}<0$, will act as a
........... at $\mathrm{t}=0^{+}$.
a) Voltage Source
b) Short Circuit
c) Open Circuit
d) Current source
2. The time constant of a RL series circuit is expressed as:
a) R / L
b) L / R
c) $R L$
d) $1 / \mathrm{RL}$
3. The resonant angular frequency for a parallel RLC circuit is expressed as:
a) $\omega_{\mathrm{r}}=\frac{1}{2 \pi f C}$
b) $\omega_{\mathrm{r}}=\frac{1}{2 \pi L C}$
b) $\omega_{\mathrm{r}}=\frac{1}{\sqrt{L C}}$
d) $\omega_{\mathrm{r}}=\frac{1}{2 \pi \sqrt{L C}}$
4. The expression sin ωt can also be re-written as:
а) $\frac{e^{j w t}+e^{-j w t}}{2}$
b) $\frac{e^{j w t}-e^{-j w t}}{2}$
c) $\frac{e^{j w t}+e^{-j w t}}{2 j}$
d) $\frac{e^{j w t}-e^{-j w t}}{2 j}$
5. In frequency domain, $\mathrm{I}(\mathrm{s})=\frac{s}{s^{2}+4}$. Then in time domain,
a) $i(t)=\cos 2 t$
b) $i(t)=e^{-2 t} \cos 2 t$
b) $i(t)=\sin 2 t$
d) $i(t)=e^{-2 t} \sin 2 t$
6. The poles of the transfer function $\mathrm{G}(\mathrm{s})=\frac{s(s-2)}{\left(s^{2}+5 s+6\right)}$ are:
a) at 0 and 2
b) at 2 and 3
b) at 0 and -2
d) at -2 and -3
7. The starting point of Bode Magnitude Plot at $\omega=1 \mathrm{rad} / \mathrm{s}$ is taken as:
a) $10 \log _{\mathrm{e}} \mathrm{k}$
b) $20 \log _{e} k$
b) c) $10 \log _{10} \mathrm{k}$
d) $20 \log _{10} \mathrm{k}$
8. The periodicity of a function $\cos t$ is:
a) $\pi / 2$
b) π
c) 2π
d) not a periodic function
9. Inverse Transfer Admittance of any electrical two-port network can be calculated as:
a) V_{1} / V_{2}
b) $\mathrm{I}_{2} / \mathrm{V}_{1}$
b) $\quad \mathrm{I}_{1} / \mathrm{V}_{2}$
d) V_{1} / I_{2}
10. The overall transmission parameters of a cascaded two-port network is:
a) $\left[\begin{array}{ll}A_{1}+A_{2} & B_{1}+B_{2} \\ C_{1}+C_{2} & D_{1}+D_{2}\end{array}\right]$
b) $\left[\begin{array}{ll}A_{1} & B_{1} \\ C_{1} & D_{1}\end{array}\right]\left[\begin{array}{ll}A_{2} & B_{2} \\ C_{2} & D_{2}\end{array}\right]$
c) $\left[\begin{array}{ll}A_{1} A_{2} & B_{1} B_{2} \\ C_{1} C_{2} & D_{1} D_{2}\end{array}\right]$
d) $\left[\begin{array}{ll}A_{1} / A_{2} & B_{1} / B_{2} \\ C_{1} / C_{2} & D_{1} / D_{2}\end{array}\right]$

Multiple Choice Questions' Answer Sheet
Code No. \square
Corrected Fill
(A) (C) (D)
Incorrected Fill
(A) (B) © In Word
Examiner's Sign:
\qquad Scrutinizer's Marks:

In Words:
Scrutinizer's Sign: \qquad Date: \square

1. (A) B (${ }^{\text {(}}$ (6. (A) (B) (C)
2. (A) (B) (C)	7. (A) (B) C (D)
3. (A) (B) (C) (D)	8. (A) (B) (C)
4. (A) (B) (C) D	9. (A) (B) (C)
5. (A) (B) (C)	10. (A) (B) (C) (D)

MANMOHAN TECHNICAL UNIVERSITY

Office of the Controller of Examinations

Budhiganga-4, Morang, Province 1, Nepal

Faculty: Engineering
Program: Electrical and Electronics
Subject: ELECTRIC CIRCUIT THEORY (EG503EE)

Exam Year:2080 Mangsir
Level: Bachelor
Time: 3 Hours

Year/Part: II/I
F.M.: 50
P.M.: 20
\checkmark Group A contains Multiple Choice Questions of 10 marks.
\checkmark Candidates are required to give their answers in their own words as far as practicable.
$\checkmark \quad$ The figures in the margin indicate Full Marks.
\checkmark Assume suitable data if necessary.

Group 'B'

Short Answer Questions (Attempt any EIGHT questions only.) ($8 \times 2=16$)

1. What are the initial conditions for Inductor and Capacitors under energized and de-energized conditions?
2. Find the time constant for a series RL circuit under step response.
3. Find the partial fraction expression for: $\mathrm{G}(\mathrm{s})=\frac{2 s}{s^{2}+3 s+2}$
4. Convert the following expression in exponential form: $\cos \beta t-j \sin \beta t$
5. Find the poles and zeros of the transfer function: $I(s)=\frac{\left(s^{2}-3 s+2\right)}{\left(s^{3}-5 s^{2}\right)\left(s^{2}+7 s+6\right)}$
6. How does a high pass filter circuit work?
7. Describe hybrid parameters for a two-port electrical network.
8. Write the expression for the Fourier series and its coefficients for a periodic signal.
9. Find the Driving point Impedance $\mathrm{Z}(\mathrm{s})$ for the following circuit:

Group 'C'

Long Answer Questions (Attempt any SIX questions only.)

1. Find the currents I_{1}, I_{2} and I_{3} using Matrix method.

2. The switch K is initially open for a long time and it is closed at $t=0$.

Find $i_{1}, i_{2}, \frac{d i_{1}}{d t}, \frac{d i_{2}}{d t}$ at $t=0^{+}$.

MANMOHAN TECHNICAL UNIVERSITY
 Office of the Controller of Examinations

Budhiganga-4, Morang, Province 1, Nepal

3. Solve for $\mathrm{i}(\mathrm{t})$ at $\mathrm{t}>0$ using Classical Method.

4. Solve for $v(t)$ at $t>0$ using Laplace Transform Method.

5. Draw the Bode Magnitude Plot Diagram for the following network function:

$$
\mathrm{H}(\mathrm{~s})=\frac{20(s+1)}{s(s+5)(s+15)}
$$

6. Find the Trigonometric form of Fourier series for the following periodic waveform:

7. Find the T-parameters for the two-port network shown below.

